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FOREWORD

This research report was prepared by the Structural Mechanics
organization of Lockheed Missiles & Space Company. The work
was done under USAF Contract AF 33(616)-6905, with Aero-
nautical Systems Division sponsorship. The research program
was initiated by Project 1368, '"Design Technologies and Structural
Configuration Concepts for Aerospace Vehicles, ' Task 136806,
"Beryllium Structural Development." The program was admin-
istered under the direction of the Structures Branch, Flight Dy-
namics Laboratory, with first Robert D. Guyton and then Norman

P. Kempton as Project Engineer,

The Lockheed Project I.eader for this program has been Robert
F. Crawford. General supervision has been the responsibility
of L. A. Riedinger, Manager of the Structural Mechanics organ-
ization. The testing was performed by A. M. C. Holmes and
R. B. Clapper, who further contributed to this report by pre-
paring Appendix A and Appendix B, respectively. R. L. Keeney
assisted in the literature survey and in the compilation of data.
The figures were prepared with the assistance of R. L. Keeney,
C. E. Stuhlman, and L. K, Tilcens.

This report covers work conducted from February 1960 to
December 1961.

This project and task are part of Alr Force Systems Com-

mand's applied research program 750A "Mechanics of Flight!
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ABSTRACT

The purpose of this study program was to investigate the de-
sign capabilities of beryllium as a structural material and to
derive and develop structural design curves and related data

for efficient structural design with beryllium.

The metal beryllium is believed to have high potential for
aerospace structures, but is not extensively considered in de-
sign applications at the present time because of uncertainties
as to the proper design procedures. This report presents in-
formation based on studies and tests which clearly shows that
beryllium now may be designed with confidence into many types
of load-carrying structures, using well-known methods of struc-
tural analysis and appropriate margins of safety. The result-
ing beryllium structures are shown to be considerably lighter
than identical structures fabricated from other metals, and
these structures are attainable with currently available be-

ryllium mill products.

PUBLICATICN REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER: % K )7 Z

WILLIAM C. NIELSEN
Colonel, USAF
Chief, Flight Dynamics Laboratory
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NOMENCLATURE
A cross-sectional area; stress ratio, equal to alternating stress minus mean
stress
a length of a panel element
b width of an element; width of a stiffened panel; the short dimension of a panel

in shear; the length of the loaded edge of a panel in uniaxial compression

b width of sandwich core element

bf width of sandwich or semisandwich facing sheet element; width of stiffener
flange element

bS width of sheet element between ¢ - ¢ stiffeners
bw height of stiffener web element
C circumference; a constant; compressive buckling coefficient for long cylin-

ders; specific heat

c restraint coefficient
D diameter

Et3
D flexural stiffness of sheet per unit width, 5

f 2
12(1 - 1)
Dx flexural stiffness of sandwich per unit width in x-direction, b = (EI)X
DQ transverse shearing stiffness of sandwich on planes perpendicular to
X x~-direction, per unit width

Dy flexural stiffness of sandwich per unit width in y--direction, Dy = (EI)y
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twisting stiffness of sandwich per unit width

depth of box beam, measured between centroids of the box-beam covers

Young's modulus; modulus of elasticity in tension, average ratio of stress
to strain for stress below the proportional limit

modulus of elasticity in compression, average ratio of stress to strain for
stress below the proportional limit

tangent modulus, local slope of the stress-strain curve

efficiency factor

elongation in percent, a measure of the ductility of a material and based on
a tension test; unit deformation or strain; the minimum distance from a hole
¢ to the edge of the sheet

allowable stress

allowable bending stress, modulus of rupture in bending
ultimate bearing stress

yield bearing stress
allowable compressive stress; column failing stress
allowable crippling stress

critical (or allowable) compressive stress in plates or panels

compressive yield stress at which permanent strain equals 0. 002 in. /in.
allowable shearing stress

critical (or ailowable) shear stress in plates or panels

ultimate stress in pure shear (this value represents the average shearing
stress over the cross section)

ultimate tensile stress
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F tensile yield stress at which permanent strain equals 0. 002 in. /in.

F critical (or allowable) compressive stress precipitating a wrinkling mode of
cr instability

f calculated compressive stress

¢

fs calculated shearing stress

G modulus of shearing rigidity

h thickness of sandwich

I bending moment of inertia of stiffener cross section taken about the stiffener

centroidal axis

K a constant, generally empirical; thermal conductivity; diagonal tension factor
KF buckling coefficient for compressive local buckling of a stiffener flange element
KG buckling coefficient for compressive general buckling of a stiffened panel

KS buckling coefficient for compressive local buckling of a sheet element of

width bS ; buckling coefficient for local shear buckling of an element
Kt theoretical stress concentration factor for normal stress

K buckling coefficient for compressive local buckling of a stiffener web element

=

buckling coefficient for compressive local buckling of truss-core sandwich
or semisandwich

L longitudinal (grain direction); length; length of cylinder

£ length of a column, or wide column

M applied moment or couple, usually a bending moment

Ma allowable bending moment

M, bending moment per unit length of chord in multiweb box beams
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m reciprocal of the slope of the straight-line portion of a minimum-weight
envelope when plotted on log-log paper

N number of bays in a conventionally stiffened panel; number of cycles to fail-
ure in a fatigue test

N compressive loading on an unstiffened or stiffened component in the direction
X . . oo
of the stiffening elements, per unit width

Nx shear loading on an unstiffened or stiffened component in xy-plane, per
Y unit width
n number of rings in a ring-stiffened cylinder subjected to hydrostatic pressure;

sometimes used interchangeably with small m defined above

P applied load (total, not unit load)

P.r hydrostatic buckling pressure per unit area

q shear flow

R stress ratio, equal to minimum stress divided by maximum stress; radius

T transverse (grain direction)

t thickness of a flat, unstiffened plate

t equivalent flat-plate thickness of a stiffened component for weight purposes

tc thickness of core material in sandwich or semisandwich panels

tf thickness of facing sheet in sandwich or semisandwich panels; thickness of
stiffener flange element

t thickness of sheet or skin element between ¢ - ¢ stiffeners

tw thickness of stiffener web element

W weight of component per unit length

z nondimensional geometry parameter

Zn q a constant used in the general instability analysis of stiffened panels having

either one or two stiffeners
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Z distance from midsurface of skin to stiffener centroidal axis

Greek Symbols

o angle of diagonal tension; coefficient of thermal expansion; notch angle
n plasticity reduction factor

n effective plasticity reduction factor

nG plasticity reduction factor for general instability

"y, plasticity reduction factor for local instability

T}T ratio of tangent medulus ET to Young's modulus

0 angle between facing and core elements in truss-core sandwich and semi-
sandwich panels

1) Poisson's ratio

p radius of gyration; density

o) used interchangeably with fc; stress

> solidity, fraction of the total enclosed area of cross section occupied by com-
pression structure

T used interchangeably with fs

Subscripts

a allowable

avg average

b bending
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cceC

cr

min
net

nom

opt

bearing
compression; core
crippling

critical

Euler; endurance
facing; flange; fixed
general instability
local instability
maximum

nminimum

based on net section
nominal

outside; original; static;
optimum value
compression cover
sheet or skin; shear
tangent; temperature
theoretical, tensile
ultimate

wrinkling

web

x-direction

yield, y-direction
direction of principal stress

direction of principal stress
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Section 1
INTRODUCTION

All new metals which are proposed for structural applications must undergo a many-
sided, detailed investigation before general acceptance by the aerospace industry.

Mill products having standard quality and properties must be made available at a cost
justifying use. Designers must be aware that either conventional methods of structural
analysis are applicable or that new methods must be developed; and the fabricator must
be able to turn out a quality component or part. Many members of the technical com-
munity have not been confident that beryllium has successfully attained these goals.
This report, in summarizing past work and the results of the present program, shows

clearly that beryllium can meet most of these requirements and is ready for acceptance

as a structural material by industry.

Beryllium structural design information is presented in detail in this report. Physical
and mechanical properties appear in Section 2. Section 3 gives data for designing
beryllium structural components. Minimum-weight design information, together with
efficiency comparisons of beryllium and other structural materials, is presented in
Section 4. These sections are supplemented by a brief summary of beryllium fabri-
cation state-of-the-art, presented in Section 5. Significant conclusions reached as

a result of this program, recommendations for future work in areas as yet not

clearly defined, and applications for structures appear in Section 6.

Each section in this report is presented in a manner to facilitate the use of information
in the design of beryllium hardware. Sections 2 and 3 are principally of interest to the
stress analyst, while Section 4 is intended for use in preliminary design. These sec-
tions logically develop a philosophy of beryllium design. In Section 2,the high modulus
of elasticity, and high strength-to-weight ratio of beryllium are documented. These

and other properties are used to develop component design charts in Section 3, many

Manuscript released by authors on 1 February 1962 for publication as an ASD Tech-
nical Report,
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of which are substantiated by tests conducted under this program. Section 4 subse-
quently indicates the extent of possible weight savings by designing efficiently with
beryllium. The impetus for preparing Section 4 arises from the fact that the highest
structural efficiency is not obtained just by using beryllium; it is obtained by designing
beryllium into the most efficient configuration for the particular structural application.

If properties of beryllium are exploited without due consideration to design configuration,
then other materials, designed into a more efficient configuration, may prove superior
to beryllium when all design factors are evaluated, including cost. The designer is
encouraged, therefore, to obtain maximum structural efficiency from beryllium
wherever it is specified in design, particularly in view of its high cost per pound in

comparison to other structural materials.

The types of tests conducted under this program and reported on herein are:

Compression-panel tests
Shear-panel tests
Tests of cylinders in axial compression

Tests of externally pressurized cylinders

Notch-sensitivity tests

Biaxiality tests

The panel and cylinder test results were generally predictable with good accuracy
using conventional methods of structural analysis, and are discussed in Section 3.
Tests were conducted at room temperature and at 800°F. In general, beryllium
exhibits a catastrophic post-buckling failure mechanism at room temperature which
should be recognized in design with appropriate margins of safety, the exact margin
depending ~a the intended function of the component. This failure mechanism at room
temperz:ure is primarily caused by brittleness resulting from biaxial stress states
developed in bending. The panel test components discussed in Section 3 developed
considerable post-buckling strength at room temperature before failure, while the

cylindrical test components developed little or no post-buckling strength.
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At 800°F, beryllium used in panels and cylinders has post-buckling characteristics
which are similar to those of the more common structural materials (such as steel
or aluminum) when used in these applications. The actual temperature at which this
change in the characteristics of beryllium takes place is below 800°F, and felt to be
about 450°F. The notch-sensitivity test results are discussed in detail in Section 2.
Wiile beryllium is notch sensitive at room temperature, it is no more so than high-
strength alloys of commonly used structural materials, such as steel. These alloys,

like beryllium, require careful attention to the notch-sensitivity problem.

The biaxiality tests are also discussed in detail in Section 2, where the high biaxial
strength of beryllium sheet as found in the tests is reported. Details of the experi-
mental investigations of the panels and cylinders are described in Appendix A. Similar

details for the biaxial strength tests are reported in Appendix B.

The results of several diversified studies conducted under this program are presented
in the various sections of this report. Most of the information in Section 2 is derived
from a survey of the literature and the substantial data in this field developed by
Lockheed Missiles and Space Company. The information presented in Section 2 com-
prises selected data which is representative of currently available beryllium products.
The minimum-weight analyses referenced in Section 4 are also the result of studies
carried out in part under this program. Further studies, based on these minimum-
weight analyses, were made to determine quantitatively the minimum weights attain-
able in beryllium and various other structural materials when used in various

component-loading applications. These results are also shown in Section 4.

Jection 2 presents physical and mechanical properties for the commercial beryllium
products currently available, namely, QMV hot-pressed block, cross-rolled sheet,
hot-upset sheet, and extrusion. However, in those portions of Section 3 dealing pri-
marily with sheet products, the curves apply to cross-rolled sheet in preference to
the hot-upset sheet. This decision was based largely on the greater amount of
mechanical property data available on cross-rolled sheet, as well as the better com-

mercial availability of this product to the user. For these same reasons, those

ASD TR 61-692 1-3



2-47-61-3

minimum-weight design curves appearing in Section 4 which apply to beryllium repre-
sent cross-rolled beryllium sheet only. Note, however, that sufficient information is
given in Sections 3 and 4 tc ermit the individual to construct similar figures for other

beryllium products.

Beryllium sandwiches were fabricated and tested late in this program. This work is

reported in Appendix C.
In summary, the information in this report illustrates that beryllium may be designed

into structural components with confidence provided that careful attention is given to

the unusual failure mechanism at room temperature and to notch sensitivity.
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Section 2

PHYSICAL AND MECHANICAL PROPERTIES OF BERYLLIUM BLOCK,
SHEET, AND EXTRUSION

2.1 INTRODUCTION

The current most reliable physical and mechanical properties of the several available
forms of beryllium are presented in this Section, based on a thorough literature sur-
vey, letters and/or personal contacts made with all companies and agencies believed
to have unpublished information on the subject,and tests conducted at Lockheed
Missiles and Space Company as part of this study. The information gathered is quite
complete for hot-pressed block, but diminishingly less complcte respectively for
cross-rolled sheet, hot-upset sheet, and extrusions. The order of completeness of
the information for the various forms reflects, in general, the length of time the

product has been available to the industry in amounts sufficient for testing purposes.

The properties presented are based on tests of material having BeO content of con-
siderable variation. Early tests were probably made with material of relatively high
BeO content since this was the grade of material available at the time. In many of
these tests, the BeO content was not reported. Since then, the industry has gradually
stabilized on a BeO content between 1 and 2 percent. Material currently produced
commercially has a nominal BeO content of about 1. 75 percent. Recently reported
tests, therefore, have this nominal oxide content. In order to base the properties
presented here on a comprehensive sample of test data, all available tests have been
included, with those tests obviously unrepresentative of currently acceptable material
being discarded. The resulting tables and charts are felt to be typical of currently
produced berylliuin, but because many of the data surveyed were incomplete, the oxide

content is not defined urless it is definitely known to be a fixed percentage.
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Most of the hot-pressed block properties have been developed by LMSC. Some of this
information is sufficient to be presented on a probability basis, and nearly all of it
represents a large enough sample to be very reliable. The cross-rolled sheet proper-
ties represent a Lzst estimate of a reasonable amount of informa*®+a from many
sources. They may be considered typical of the current production meierial. Infor-
mation on hot-upset sheet and extrusion :ropertie: is very liinited. That information
presented has been selectively extracted irom the literature with emphasis on the

current state-of-the-art.

The physical properties of beryllium are presented in subsection 2.2, while the
mechanical properties are presented in subsection 2.3. Properties are given at ele-
vated temperature as well as room temperature wherever possible. The format used
is similar to that found in MIL-HDBK-5; that is, the room-temperature properties

are presented in tabular form while the elevated-temperature properties are presented
in graphical form.

Subsection 2. 4 presents data on the notch sensitivity of beryllium hot-pressed block
and cross-rolled sheet. Subsection 2.5 should be referred to for information on the
biaxial strength of these same two beryllium products. The information in these two
sections, while generally included under '"mechanical properties," is treated in more
detail in this report because of the peculiar nature of these properties which makes

their presentation not a routine matter.

In summary, it should be noted that all beryllium products discussed in this report
are from QMV, -200 mesh, hot-pressed,and sintered beryllium powder. The designa-
tion QMV refers to the type of beryllium powder and is often used in the literature as
a prefix to the description of the material. It has been dropped in many places in the

text of this report because only products of QMV powder are treated.
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2.2 PHYSICAL PROPERTIES

The following physical characteristics of beryllium are generally applicable to all
commercial forms, since they are influenced by differences in composition rather
than differences in fabrication processes. BeO-content variations have been found

to influence physical properties, and iron content is believed to cause variations,
although published work in this area does not clearly indicate the magnitude of dif-
ferences. Industry practice is to hold the impurities to a minimum, with BeO con-
tent being the principal variant. Some of the properties in this section are shown

as functions of BeO content. The remaining properties are representative of material
currently available; that is, with a nominal BeO content c¢f 1. 75 percent. A summary

of room-temperature physical properties, taken from Ref. 2-1, is presented in
Table 2-1.

Table 2-1
A SUMMARY OF BERYLLIUM PHYSICAL PROPERTIES AT ROOM TEMPERATURE
Density (lb/in?) 0. 066
Specific Gravity 1.85
Atomic Number 4
Atomic Weight 9.02
Atomic Diameter (A) 2.9221
Reflectivity, White Light (%) 55
Specific Heat, Room Temperature (BT U/Ib/°F) 0. 445
Latent Heat of Fusion (BT U/1b) 470
Melting Point (°F) 2340
Thermal Conductivity, Room Temperature (BTU/ftz/ft/hr) 104
Thermal Expansion, Room Temperature (in./in./°F) 6 x 10'6
Electrical Conductivity (% of copper) 35 to 45
Resistivity (uohm-in, 2/in. ) 1.6
Magnetic Susceptibility (CGS electromagnetic units) -1.00
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Figure 2-1 shows the variation of specific heat with temperature. The curve is in
good agreement with 2 number of references and should be considered quite exact for
BeO content of 1 percent. Reference 2-2 indicates that specific heat varies inversely
with BeO content. Thermal conductivity is plotted against temperature in Fig. 2-2.
The source, Ref. 2-1, presents a study of a wide variety of tests. Figure 2-3 shows
the variation of thermal expansion with temperature and BeO content. Electrical
resistivity and magnetic susceptibility versus temperature are shown in Migs. 2-4
and 2-5,respectively. There is no severe corrosion of beryllium in air at 400°C with
200-hr exposure. Reference 2-3 reports the time for onset of noticeable corrosion
as 60 hr at 700°C and 1 hr at 900°C. The material tested was extruded vacuum-cast

material.
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Fig. 2-2 Effect of Temperature on Thermal Conductivity of Beryllium
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2.3 MECHANICAL PROPERTIES

Design mechanical properties are presented for the following forms of beryllium:

e Hot-pressed block
e Cross-rolled sheet
® Hot-upset sheet

¢ Extrusion

The properties shown are those commonly used in aerospace design, and closely
pattern, insofar as is possible with the information currently available, the format for
mechanical properties established in MIL-HDBK-5. The general order for presenta-
tion of properties is as follows: design mecharical properties at room and elevated

temperature, ductility, stress-strain relationships, fatigue, and creep.

The mechanical properties of beryllium have been found to differ in the longitudinal
and transverse grain directions. In this report, these terms have ihe normal connota-
tion when applied to sheet or extrusion. However, in describing hot-pressed block,
longitudinal refers to material tested parallel to the direction of pressing, and trans-

verse refers to material tested normal to the direction of pressing.

The mechanical properties of all forms of ber;yllium vary with BeO content. Some
typical variations are shown for hot-pressed block material in Figs. 2-6 through 2-9.
The initial three figures present tensile stress-strain curves versus temperature for
material having 1-, 2-, and 3-percent BeO content, respectively. Figure 2-9 shows
the variation of Young's modulus with BeO content and temperature. These figures
show that Young's modulus varies directly with BeO content but that variations in
stress-strain properties with BeO content depend on temperature. These curves
should not be used for design purposes. Figures presenting hot-pressed block stress-
strain curves and mechanical properties for design are cited later in this section. As

discussed in subsection 2.1, the design properties are generally based on a nominal

BeO content of 1.75 percent unless otherwise stated.
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All forms of beryllium are insensitive to strain rate (excluding impact loading) until
temperatures in excess of 800°F are reached. Consequently, strain rates are not
specified for properties below 800°F. A nominal rate of 0. 005 in. /in./min applies
to all data. All properties have been determined for uniaxial stressing conditions.
Refer to subsections 2.4 and 2.5, respectively, for information on the notch sensi-
tivity and biaxial strength of beryllium. Unless otherwise stated, the mechanical -

property terms have the same definition as given in MIL-HDBK-5.

ASD TR 61-692 2-15




2-47-61-3

2.3.1 QMV Hot-Pressed Block

Design mechanical properties for hot-pressed block at room temperature are pre-
sented in Table 2-2. All properties are typical except the tensile ultimate, yield,
and elongation values, which may be considered 90-percent probable on the basis of
a statistical analysis of several hundred specimens tested by LMSC over the past
several years. The remaining properties are based on quite extensive tests and
have a good level of reliability. Figures 2-10 through 2-38 present elevated-tem-
perature properties of hot-pressed block. All figures present typical properties
except Figs. 2-10 through 2-13 which show 50-, 90-, and 99-percent probability
properties. These figures present the variation of the tensile ultimate stress in
the longitudinal and transverse directions with temperature (Figs. 2-10 and 2-11),
and the variations of the tensile yield stress in the longitudinal and transverse
directions with temperature (Figs. 2-12 and 2-13). The basis of these probability

levels is identical to that noted above for the room-temperature tensile properties.

The variation of the compressive yield stress with temperature is presented in

Fig. 2-14. The compressive yield stress is defined here as the stress correspond-
ing to a permanent strain of 0.002. Ultimate shear stress versus temperature is
given in Fig. 2-15. Figures 2-16 through 2-18 present ultimate and yield-bearing
stresses versus temberature where pin diameter is varied, but edge distance e

is held constant at 0.5 in. Data on pin diameters D of 3/16 in., 1/4 in., and

5/16 in., respectively, are presented. These curves are based on an evaluation by
LMSC of Ref. 2-5 and associated unpublished data from Thermatest Lahoratories.
It should be noted that each figure represents a particular e/D value and gives
bearing strengths significantly different from the other two e/D values. The vari-
ation of tensile elongation in the longitudinal direction with temperature is given in
Fig. 2-19. This figure shows that hot-pressed block exhibits an increasing elonga-
tion up to 800°F followed by a rather steep reversal to 1400°F, at which point the
elongation has decreased to 3.5 percent. The elongation has been reported to in-

crease again above 1400°F.
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Table 2-2
a
TYPICAL DESIGN MECHANICAL PROPER{'IES OF BERYLLIUM( )
Hot-Pressed | Crous-Rolled | Hot-Upset | o . .0 o
Form Eilerk Sheet Sheet
Ref. ' % Ref. Ref. Ref.__y
Mo =
Ftu {ksi) |
L 12 1o [69(C) 75.6 |2-6 | 77.2| 2-7
T 47® 157 |72
Fy, (ksi) o
L -‘36(3 2-1 59(0)(0) 50.0 {2-6 |43.9| 2-7
T PArTILIN P M
|
- . Am B - (c) 50.0 | 2-8 |
fcy (ksi) ; 40.5 | 2-1 58 .
F (ksi) y 50.8 |2-1 |70® |25
su ‘
Fbru (ksi) (e/:0 = 2.0,
5/16-ir. pin diam.) | 128 |[2-5 [144 2-5
:F\-'\'v--c.- (-k:? A‘. \(3/..[)' = 2.0 u
571 .'.v’fin. pin diam.) 120 2-5 1150 2-5 | !
€qiu}
L 0.7(2) 2-1 | 5.5(¢) 8.0 | 2-8
T 1.5( ) 2-1
K (106 psi) 44 2-1 43.5 2-9 42.0 | 2-6 i
EC(106 psi) | o4z 2-1 |42.5 2-10 | = 45 | 2-6
G (10° psi) 20 2-1 [20.0 2-5 20.0 | 2~7
Poisson's ratio 0.02512-11 0.0Q(d)

(a) All properties based on a nominal BeO content of 1.75%.

(b) These values are 90% probable.

(c) Value based on information of all references cited for this product.

(d) In plane of sheet; see subsection 2.5 for discussion.

(e) This value for shear ultimate taken normal to plane of sheet; F =2 40 ksi
in the plane of sheet (see Fig. 3-10) i
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TENSILE ELONGATION ( PERCENT )

REF. 2-1
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Fig. 2-19 Effect of Temperature on the Longitudinal Tensile Elongation of Hot-
Pressed Beryllium Block
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Young's modulus versus temperature is presented in Fig. 2-20, while the compressive
modulus of elasticity is presented in Fig. 2-21. Typical stress-strain curves at room
and elevated temperatures in tension and in compression are given in Figs. 2-22 and

2-23, respectively.

Axial fatigue information on hot-pressed beryllium block is presented in Figs. 2-24

through 2-37. The terminology is defined in Fig. 2-24.

| CYCLE MAXIMUM

STRESS

MEAN

\ / STRESS
5 TIME

MINIMUM
= STRESS

STRESS

Fig. 2-24 Definition of Fatique Terms
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In addition:

Alternating stress

maximum stress — mean stress

Stress range maximum stress — minimum stress

minimum stress

Stress ratio = R = ;
maXimum stress

alternating stress
mean stress

Stress ratio = A =

The axial fatigue characteristics of hot-pressed block as a function of various combina-
tions of stress concentration factor Kt and stress ratio R are given in Figs. 2-25
through 2-32. Figures 2-25 through 2-27 are taken from Ref. 2-7. The initial figure
presents informa..on at room temperature, while the other two present information at
1100°F. A testing frequency of approximately 350 cps was used to obtain data at both
temperatures. The stress in these figures is given in terms of maximum stress. A
comparison of Figs. 2-25 and 2-26 shows the effect of temperature on the fatigue
characteristics of identical specimens. Similarly, Figs. 2-26 and 2-27 show the effect
of a decreasing mean stress (presented in terms of R) on identical notched specimens
at 1100°F. All three figures present information on unnotched specimens as well as
notched specimens. Additional combinations of Kt and R at room temperature only
are treated in Figs. 2-28 and 2-29. These figures are taken from Ref. 2-12 and are
presented in terms of alternating stress, in contrast to maximum stress in the pre-

ceding three figures. However, by substituting the definitions presented above,it can
be shown that:

i % R [alternating stress]

maximum stress =
These figures indicate, in the curves for the type I specimen, that the effect of a
decreasing mean stress (R decreasing from 0 to -1) is to substantially increase the
alternating stress for the range of cycles to failure shown. The stresses for the type
II and type III specimens are based on net area. A more complete picture of the re-
lationship between mean stress, alternating stress, and cycles to failure for the case

of axial fatigue in unnotched hot-pressed block at room temperature is shown in Fig. 2-30.
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ALTERNATING STRESS (KSI)

REF.2-12

0 |

CYCLES TO FAILURE
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Fig. 2-30 Effect of Mean Stress on the Axial Fatigue Behavior of Unnotched Hot-Pressed
Beryllium Block at Room Temperature
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Further data at elevated temperatures are given in Fig. 2-31 at 800°F, and Fig. 2-32
at 1200°F. Both of these figures are taken from Ref. 2-13 and cover unnotched speci-
mens having R = 0 and -1.0. They are presented in terms of maximum stress and
for a testing frequency of 30 cps. When Fig. 2-32 is compared with Fig. 2-27 for the
case Kt = 1.0, R = -1.0, the approximate effect of testing frequency at elevated
temperature may be determined. For a given maximum stress and stress ratio, it is

seen that the number of cycles to failure increases with increasing testing frequencies.

Figures 2-33 through 2-37 present information on the fatigue characteristics of joints
fabricated from hot-pressed beryllium block. Three types of joints are investigated —
those having 2, 4, and 5 fasteners. Sketches showing the arrangement of the fasteners

for each type of joint are presented in Fig. 2-33.

All specimens were tested in tension with steel loading and splice plates as shown in
Fig. 2-34. Figure 2--35 presents room-tem<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>